APPLICATIONS

Linear Displacement
Angular Displacement
Motor Control
Valve Position
Proximity Detection
Current Spike Detection

Not actual size

Linear / Angular / Rotary Displacement Sensors

High resolution, low power MR sensor capable of measuring the angle direction of a magnetic field from a magnet with $<0.07^{\circ}$ resolution. Advantages of measuring field direction versus field strength include: insensitivity to the tempco of the magnet, less sensitivity to shock and vibration, and the ability to withstand large variations in the gap between the sensor and magnet. These sensors may be operated on 3 volts with bandwidth response of $0-5 \mathrm{MHz}$. Output is typical Wheatstone bridge.

FEATURES AND BENEFITS

No Rare Earth Magnets Unlike Hall effect devices which may require samarium cobalt or similar "rare earth" magnets, the HMC1501 and HMC1512 can function with Alnico or ceramic type magnets.

Wide Angular Range HMC1501-Angular range of $\pm 45^{\circ}$ with $<0.07^{\circ}$ resolution.
HMC1512-Angular range of $\pm 90^{\circ}$ with $<0.05^{\circ}$ resolution.
Effective Linear Range Linear range of 8 mm with two sensors mounted on two ends; range may be increased through multiple sensor arrays operating together.

Absolute Sensing	Unlike incremental "encoding" devices, sensors know the exact position and require no indexing for proper positional output.
Non-Contact Sensing	No moving parts to wear out; no dropped signals from worn tracks as in conventional contact based rotary sensors.
Small Package	Available in an 8-pin surface mount package with case dimensions (exclusive of pins), of $5 \mathrm{~mm} \times 4 \mathrm{~mm} \times 1.2 \mathrm{~mm}$ total mounting envelope, with pins of less than 6 mm square.

Large Signal Output

PRINCIPLES OF OPERATION

Anisotropic magnetoresistance (AMR) occurs in ferrous materials. It is a change in resistance when a magnetic field is applied in a thin strip of ferrous material. The magnetoresistance is a function of $\cos ^{2} \theta$ where θ is the angle between magnetization M and current flow in the thin strip. When an applied magnetic field is larger than 80 Oe , the magnetization aligns in the same direction of the applied field; this is called saturation mode. In this mode, θ is the angle between the direction of applied field and the current flow; the MR sensor is only sensitive to the direction of applied field.

The sensor is in the form of a Wheatstone bridge (Figure 1). The resistance R of all four resistors is the same. The bridge power supply V_{s} causes current to flow through the resistors, the direction as indicated in the figure for each resistor.

Both HMC1501 and HMC1512 are designed to be used in saturation mode. HMC1501 contains one MR bridge and HMC1512 has two identical MR bridges, coexisting on a single die. Bridge B physically rotates 45° from bridge A. The HMC1501 has sensor output $\Delta \mathrm{V}=-\mathrm{V}_{\mathrm{S}} \mathrm{S} \sin$ (28) and the HMC1512 has sensor output $\Delta \mathrm{V}=\mathrm{V}_{\mathrm{S}} \mathrm{S} \sin (2 \theta)$ for sensor A and sensor B output $\Delta \mathrm{V}_{\mathrm{s}}=-\mathrm{V}_{\mathrm{s}} \mathrm{S} \cos (2 \theta)$, where V_{s} is supply voltage, S is a constant, determined by materials. For Honeywell sensors, S is typically $12 \mathrm{mV} / \mathrm{V}$.

Figure 1

PINOUT DRAWINGS

HMC1501

HMC1512

Caution: Do not connect GND or Power to Pin 3,4 \& 6.

MR SENSOR CIRCUITS

TYPICAL SENSOR OUTPUT

HMC1501 output voltage vs. magnetic field angle

APPLICATION CONFIGURATION

Proximity Position

HMC1512 output voltage vs. magnetic field angle

A

Linear Position

Rotary Position

PACKAGE DRAWING 8-Pin SOIC

	Millimeters		Inches			
Symbol	Min	Max	Min	Max		
A	1.371	1.728	.054	.068		
A1	0.101	0.249	.004	.010		
B	0.355	0.483	.014	.019		
D	4.800	4.979	.189	.196		
E	3.810	3.988	.150	.157		
e	1.270		ref	.050		ref
H	5.816	6.198	.229	.244		
h	0.381	0.762	.015	.030		

SPECIFICATIONS

Characteristics	Conditions*	HMC1501			HMC1512			Units
		Min	Typ	Max	Min	Typ	Max	
Bridge supply	Vbridge referenced to GND	1	5	25	1	5	25	V
Bridge resistance	Bridge current-1 mA	4	5	6.5	2.0	2.1	2.8	$\mathrm{K} \Omega$
Angle range	\geq Saturation field	-45		+45	-90		+90	deg
Sensitivity	Vbridge $=5 \mathrm{~V}$, field 80 Oe , (1) @ zero crossing (2) @ Zero crossing, averaged in the range of 45°		$\begin{aligned} & 2.1 \\ & 1.8 \end{aligned}$			$\begin{aligned} & 2.1 \\ & 1.8 \end{aligned}$		$\mathrm{mV} /{ }^{\circ}$
Peak -to-peak Voltage	Vbridge $=5 \mathrm{~V}$, field $=80 \mathrm{Oe}$	100	120	140	100	120	140	mV
Bridge offset	Field $80 \mathrm{Oe}, \theta=0^{\circ}$Bridge A Bridge B	-7	3	7	$\begin{gathered} \hline 0 \\ -4 \end{gathered}$	$\begin{gathered} 2.5 \\ 0 \end{gathered}$	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	mV / V
Saturation field	Repeatability <0.03\% FS	80			80			G
Bandwidth	Magnetic signal	0		5	0		5	MHz
Resolution	Bandwidth $=10 \mathrm{~Hz}$,Vbridge $=5 \mathrm{~V}$		0.07			0.05		-
Hysteresis error	Magnetic field \geq saturation field, Vbridge $=5 \mathrm{~V}$		$\begin{array}{\|c\|} \hline 30 \\ 1.7 \times 10^{-2} \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 30 \\ 1.7 \times 10^{-2} \\ \hline \end{array}$		$\begin{gathered} \mu \mathrm{V} \\ \mathrm{deg} \end{gathered}$
Bridge Ω tempco	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		0.28			0.28		\%/ ${ }^{\circ} \mathrm{C}$
Sensitivity tempco	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { Vbridge }=5 \mathrm{~V} \end{gathered}$		-0.32			-0.32		\%/ ${ }^{\circ} \mathrm{C}$
Bridge offset tempco	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		-0.01			-0.01		\%/ ${ }^{\circ} \mathrm{C}, \mathrm{FS}$
Noise Density	Noise at 1 Hz , Vbridge $=5 \mathrm{~V}$		100			70		nV Hz
Power Consumption	Vbridge $=5 \mathrm{~V}$		5			23		mW

*Tested at $25^{\circ} \mathrm{C}$ except stated otherwise.
Sensitivity tempco $\mathrm{Cs}=\frac{\mathrm{St}-\mathrm{So}_{o}}{\mathrm{So}^{*} \mathrm{t}}=-0.32 \% /{ }^{\circ} \mathrm{C}$
Where \quad So = sensitivity at zero temperature
$\mathrm{t}=$ temperature in the range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$\mathrm{St}=$ sensitivity at temperature t

Offset tempco $\mathrm{Co}_{0}=\frac{\mathrm{V}_{0}(\mathrm{t})-\mathrm{V}_{0}(\mathrm{o})}{\mathrm{VP}_{\mathrm{P}} \mathrm{P}^{*} \mathrm{t}}=-0.01 \% /{ }^{\circ} \mathrm{C}$
Where $\quad V_{o}(0)=$ bridge offset at zero temperature
VP-P = peak-to-peak voltage
$t=$ temperature in the range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{o}}(\mathrm{t})=$ offset at temperature t
$1 \mathrm{KA} / \mathrm{m}=12.5$ Gauss
1 Tesla = 10^{4} Gauss

Power consumption $P=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
Where $\quad \mathrm{V}=$ Bridge supply voltage
R = Bridge resistance

Honeywell reserves the right to make changes to any products or technology herein to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

